FROM SPEC TO PROTECT

Advances in Waterbased Flame Retardant Coating Technology

Mark Schultz Government Marine Manager Sherwin-Williams June 1, 2022

Agenda

- Background
- Regulatory
- Objective
- Performance

USS Bonhomme Richard (LHD-6)

Flame Retardant Definition

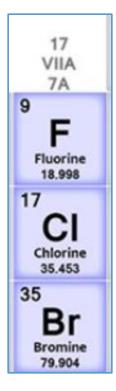
Flame retardant is "substance added, or a treatment applied, to a material in order to suppress or delay the appearance of a flame and/or reduce the flame-spread rate."¹

Hexabromocyclododecane

- 1. Vapor phase inhibition
 - a) Brominated flame retardants
- 2. Solid phase char flame retardants
 - a) Intumescent coatings
- 3. Quench and cool systems
 - a) Hydrated minerals
- 1. V. Babruskas, R. Fuoco. A. Blum, Polymer Green Flame Retardants, 2014. pages 87-118.

Commercial Shipping

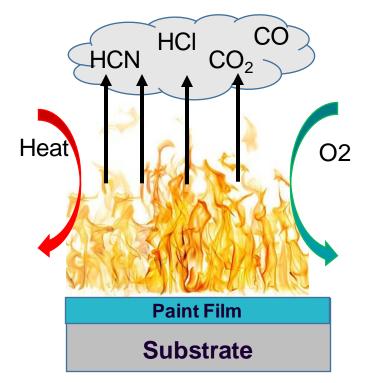
Moskva


Current MIL-Spec Technology

- 1. Interior habitability spaces (low smoke density, low toxicity, low flamespread)
- 2. MIL-DTL-24607C
 - a) Solvent based
 - b) Chlorinated alkyd resin
 - c) Contains parachlorobenzotriflouride (Oxsol 100) exempt solvent
- 3. MIL-PRF-24596C
 - a) Waterbased
 - b) F25A
 - c) Polyvinyldiene chloride acrylic emulsion

Regulatory Concerns

- 1. Perflouroalkyl Substances (PFAS)
 - a) Eliminate Oxsol 100 exempt status?
 - b) EPA (Federal and California) summer 2023
- 2. Halogenated Compounds
 - a) Detrimental to human health and the environment
 - b) 2030 Greenhouse Gas Pollution Reduction Act
 - c) 50% reduction in emissions from 2005 levels by 2030
 - d) The US will also reduce non-CO₂ greenhouse gases, including methane, hydrofluorocarbons and other potent short-lived climate pollutants


Objective

- GOAL: Enhance interior habitability space coatings
- 1. Maximize crew safety
- 2. Maximize ship safety / survivability
- 3. Enhance application and performance properties
- 4. Meet current (and future) environmental and regulatory concerns

Novel Flame Retardant Latex MIL-PRF-24596

Class 1	Surface ships	
Class 2	Submarines	
Grade A	Waterbased, air dry, < 175 g/L	
Application A	Steel	
Application B	Aluminum	
Application C	FRP	
Application D	Wood	
Application E	Elastomeric foam insulation	

Hazardous Gas Emission - Safety

ASTM E800 Toxic gas emission

Compound	Maximum IDLH (PPM)	Soft White w/o pilot flame	Soft White with pilot flame
HCN	50	Not detected	Not detected
HCI	100	Not detected	Not detected
CO ₂	50,000	Not detected	1611
СО	1,500	Not detected	85

Thermal Properties – Safety and Survivability

Property	Target	Next Gen (soft white)
ASTM E662 Smoke Density	15 (flame)	4.7
Max Ds @ 4 min for Application A	15 (non-flame)	6
ASTM E162 Critical Radiant Panel (Surface Flammability)	5	0

Smoke density – very low Enhances crew visibility Safety Surface Flammability Zero flame spread Does not propagate flame Safety/Survivability

Improved Properties

Property	Target	Navy F25A legacy control (soft white)	Next gen (soft white)
Yellowness Index	dE < 3.0	3.41	0.38
Sag Index (mils)	> 4	8	11
Viscosity in KU	<90	140+	69.9
Contrast Ratio	>0.90	0.960	0.98
Dry to Touch (Hrs)	< 3	1	50 min
Flash Rust Resistance	No rust spots	Rust spots observed	Pass
Shelf Life (Months)	12-24 months	12	24

Yellowness Index

Flash Rust Resistance

ctri	P1	P2

Regulatory Features

- 1. Lower VOC
 - a) < 175 g/L
 - b) MIL-DTL-24067 (250 or 340 g/L)
- 2. Non-halogenated
 - a) No chlorinated resins
 - b) No brominated FR
- 3. Oxsol 100 free
- 4. Water clean-up

Reduced Environmental Impact

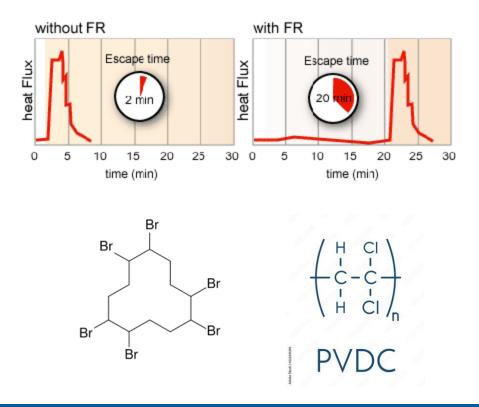
			Next Gen (soft white)	
	Life Cycle Analysis	Life Cycle Analysis Indicator	Reduction per 10,000 gallons annually, when compared to Navy legacy formula	% Reduction
		Global Warming Potential	44,839 kg CO ₂ eq	~32% reduction
LCA modeled using GaBi 9.2 Software TRACI 2.1 method were used as characterization factors		Smog (Photochemical Ozone Potential)	1,993 kg O_3 eq	~33% reduction
		Acidification Potential	$23,769 \text{ kg SO}_2 \text{ eq}$	~60% reduction

Conclusion

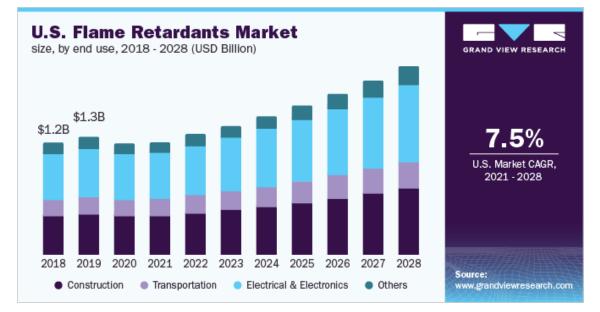
- 1. Objective achieved
- 2. MIL-PRF-24596 qualified
- 3. Improved smoke density, flammability, toxicity
 - a) Zero flame spread index
- 4. Enhanced application and performance properties
 - a) Minimal yellowing, lower viscosity
 - b) Improved shelf stability & flash rust
- 5. Non-halogenated
- 6. Oxsol 100 free, low VOC
- 7. Environmentally sustainable

FROM SPEC TO PROTECT

Thank You


FROM SPEC TO PROTECT

Extra Slides


Safety

- June 2014, EPA releases flame retardant alternatives for HBCD-containing insulations
 - Butadiene styrene brominated copolymer
 TBBPA-bis brominated ether derivative
 TBBPA bis(2,3-dibromopropyl) ether
- But these alternatives release heavy smoke and contribute to Optical smoke density
- Chlorinated resins are considered environmentally undesired
- Provide safer environmentally friendly alternative

Opportunity Statement – Halogen Free FR

- Global flame retardant market size valued at \$7.46B in 2020¹
- Current halogenated FR generates corrosive smoke during combustion along with toxic gases
- Global flame retardant market
 seeking halogen free alternatives
- Global market value for halogen free expected to reach \$6.9B by 2024²

1. https://www.grandviewresearch.com/industry-analysis/flame-retardant-market

2. https://www.marketwatch.com/press-release/halogen-free-flame-retardant-market-size-2021-share-estimation-trend-analysis-industry-growth-rate-company-profiles-with-strategies-global-sales-and-revenues-future-demands-production-scenario-and-supply-forecast-2027-2021-12-31